Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- gensim
- computer
- cs224n
- language_model
- computer_setting
- cs231n
- deeplearning
- error
- pip
- natural_language_processing
- seq2seq
- text
- paper_review
- nlp
- machinelearning
- install
- Stanford
- github
- Ai
- linux
- Vim
- git
- terminal
- code
- review
- Statistics
- slideshare
- tab
- json
- Standford
Archives
- Today
- Total
NLP/AI/Statistics
[cs231n] cs231n - START 본문
Standford 강의 중 CS231n에 대하여 공부하고 정리한다.
강의의 보충 자료인 lecture notes를 토대로 공부하여 이를 정리한다.
CS231n Convolutional Neural Networks for Visual Recognition
cs231n.github.io
Lecture Notes)
1) Image Classification
2) Linear Classification
3) Backpropagation
4) Neural Networks1: Architecture
5) Neural Networks2: Data and Loss
6) Neural Networks3: Learning and Evaluation
7) Convolutional Neural Networks: Architectures, Convolution/Pooling
8) Understanding and Visualizing Convolutional Neural Networks
'Stanford Lectures : AI > CS231n' 카테고리의 다른 글
[cs231n] Note 2: Linear Classification (Loss function) (0) | 2020.12.09 |
---|---|
[cs231n] Note 2: Linear Classification (Introduction) (0) | 2020.11.27 |
[cs231n] Note 1: Image Classification (Validation sets for Hyperparameter tuning) (0) | 2020.11.19 |
[cs231n] Note 1: Image Classification (Nearest Neighbor Classifier) (0) | 2020.11.16 |
[cs231n] Note 1: Image Classification (Introduction) (0) | 2020.11.11 |
Comments